By anne-marie.dubois - Posted on 28 janvier 2016

Version imprimable

Expertises

Géochimie et écotoxicologie aquatique

 

418 654-2538

418 654-2600

peter.campbell@ete.inrs.ca

 

Centre Eau Terre Environnement

  • 490, rue de la Couronne

    Québec (Québec)

    G1K 9A9 CANADA

 

 

 


Intérêts de recherche

 

Pour plusieurs métaux bivalents (ex. Cd, Cu, Pb, Zn) et pour des milieux artificiels étudiés au laboratoire, il existe beaucoup de données démontrant que la réponse biologique provoquée par le métal dissous dépend de la concentration de l’ion métallique libre, Mz+. Pour un organisme aquatique donné, les effets biologiques d’un métal dissous vont également dépendre de divers autres facteurs environnementaux (ex. pH, dureté, [Ca], salinité, [matière organique dissoute]). Ces facteurs peuvent, en principe, agir de deux manières : directement sur l’organisme, en influant sur sa physiologie et donc sa sensibilité au métal; et indirectement, en influençant notamment la spéciation du métal dans le milieu. Le professeur Campbell s’intéresse au développement d’un modèle général pour prédire la biodisponibilité des métaux traces chez les organismes aquatiques; ce modèle devra tenir compte de la spéciation du métal ainsi que de l’influence directe de divers facteurs environnementaux : la matière organique dissoute, le calcium, la salinité et le pH.

 

Les recherches passées comprenaient des éléments de chimie analytique, de géochimie et de toxicologie aquatique. D’abord, on visait le développement de méthodes analytiques fiables pour déterminer la spéciation de certains métaux traces dissous, aussi bien dans les eaux naturelles que dans les milieux synthétiques utilisés pour des bioessais; on s'intéressait à des métaux essentiels (ex. Cu, Zn) ainsi qu’à des métaux non essentiels (ex. Al, Ag, Cd). L’application de telles méthodes analytiques à des eaux naturelles permet d’étudier le comportement géochimique de ces métaux et d’identifier/quantifier les facteurs qui contrôlent leur spéciation et leur mobilité. Finalement, on poursuivait des recherches écotoxicologiques complémentaires sur ces mêmes métaux, dans le but d’élucider les relations existant entre les formes de métal présentes dans les eaux naturelles et leurs effets biologiques. Pour les métaux cationiques et leurs complexes hydrophiles, le point de départ choisi était le modèle du ligand biotique (BLM ou Biotic Ligand Model), compte tenu de sa capacité indéniable à rationaliser la grande majorité des données toxicologiques obtenues au laboratoire dans des milieux artificiels. Il s’agissait ici de tester les limites du BLM dans des conditions réalistes, notamment en ce qui à trait au pH, à la salinité, à la présence de ligands organiques naturels et la présence de métabolites assimilables de poids moléculaire faible.

 

Cette validation du modèle a fait appel à des expériences de prise en charge (uptake), où l’on suivait de près la cinétique des réactions impliquées (adsorption à la surface biologique, transport à travers la membrane biologique, complexation intracellulaire) et à des essais de toxicité. Les cibles biologiques étaient exposées aux métaux en contrôlant avec soin la spéciation du métal dans le milieu d’exposition - la manipulation de la spéciation des métaux dans le milieu externe permettait d’explorer les limites du modèle et de le raffiner.

 

Outre ces expériences au laboratoire, le professeur Campbell étudiait aussi comment les organismes aquatiques répondent à une exposition aux métaux sur le terrain. Ces recherches se déroulaient dans des régions minières et elles impliquaient l’échantillonnage d'organismes indigènes dans des lacs ou des rivières situés le long d’un gradient de contamination en métaux. On cherchait ici à tester les modèles de laboratoire sur le terrain et à établir des liens entre l’exposition aux métaux, la prise en charge des métaux et leur spéciation intracellulaire (complexation par la métallothionéine ou par d’autres ligands cytosoliques) et la manifestation d'effets biologiques délétères chez les organismes cibles.

 

Formation


B.Sc. Chimie physique, Université Bishop's
Ph.D. Chimie organique et organométallique, Université Queen's
Stage postdoctoral : Chimie des phosphonates. Université Monash, Melbourne, Australie

 

Activités scientifiques

Membre, Regroupement des écotoxicologues du Québec (EcotoQ) 
Membre, Comité de direction de la revue Environmental Chemistry
Membre, Ecotoxicity Technical Advisory Panel (ETAP)

Président, Conseil scientifique, Fondation Rovaltain en Santé-Environnement 

 

Distinctions

2002-          Membre, Société Royale du Canada, Académie des Sciences

2002-2015  Ancien titulaire d’une Chaire de recherche du Canada (Écotoxicologie des métaux)

2019           Founders’ Award, Society of Environmental Toxicology and Chemistry (SETAC)
2019           Outstanding Contribution Award, Canadian Ecotoxicology Workshop (CEW)
2011           Distinguished Visiting Scientist Award, CSIRO Land and Water, Australie
2009           Doctorat honorifique, Université de Bordeaux I, France
2001           Prix Synergie, CRSNG et Conference Board du Canada, décerné à l’équipe de l’INRS-Eau, l’Université McMaster, l’Université Wilfrid Laurier et Kodak Canada
2000           Chandler-Misener Award, International Association for Great Lakes Research, corécipiendaire avec Dr M.R. Twiss
1989           Prix Michel Jurdant (Sciences environnementales), Association canadienne française pour l'avancement des sciences, corécipiendaire avec Dr A. Tessier

 

 

Projets terminés récemment

 

QICAR (Quantitative Ion Character-Activity Relationships)
Le développement de nouvelles technologies, dont celles liées à la production d'énergie verte, nécessite l'utilisation de métaux tels que l’or, l’indium, le germanium les éléments du groupe du platine, pour lesquels les impacts sur les écosystèmes aquatiques sont mal connus. Les relations quantitatives structure-activité (QSAR) sont utilisées depuis de nombreuses années maintenant pour résoudre ce problème pour les molécules organiques nouvellement formulées. Ces modèles relient avec succès les propriétés chimiques d'une molécule (comme son coefficient de partage octanol-eau) à ses activités biologiques. Pour les métaux, le développement de tels modèles a été moins complet, car moins de « nouveaux » composés inorganiques ont été introduits par rapport aux composés organiques. Néanmoins, plusieurs modèles QICAR (Quantitative Ion Character-Activity Relationships) ont été développés en utilisant une ou plusieurs caractéristiques des ions métalliques (électronégativité, potentiel d'ionisation,…) pour prédire les effets des métaux (réduction du taux de croissance, mortalité,…) sur les organismes aquatiques. Dans cette étude, l’équipe du professeur Campbell se sont concentrés sur l'élaboration de QICAR basés à la fois sur les concentrations totales de métaux et les activités des ions métalliques libres pour prédire la toxicité des métaux critiques pour la technologie (TCM) sur des organismes modèles représentatifs (algues, daphnies, poissons).
Participants : Séverine Le Faucheur, Claude Fortin, Peter Campbell
Financement : International Zinc Association


NEDEM (Neutralisation des eaux de drainage dans l'environnement minier)
La disposition subaquatique (DSA) de résidus miniers riches en sulfures dans des installations construites est l'une des nombreuses méthodes d'atténuation utilisées par les mines. Le principal mécanisme d'atténuation résultant de l'élimination sous l’eau est la limitation de la pénétration d'oxygène dans les pores remplis d'eau présents dans les résidus, ce qui réduit considérablement l'oxydation des sulfures, minimise la lixiviation des métaux et empêche le développement d'un drainage acide.
À ce jour, la plupart des études et activités de surveillance liées aux installations de DSA fermées se sont concentrées sur les performances physiques et géochimiques initiales des installations et sur la chimie résultante des eaux de surface retenues dans l’installation. Les aspects à long terme, tels que l’addition progressive de matières organiques naturelles par la sédimentation au-dessus des résidus et la performance biologique globale de ces installations, ne sont pas aussi bien compris. En particulier, une lacune majeure dans la compréhension concerne la colonisation biologique de telles installations, la santé des communautés biologiques établies et l’influence de ces communautés sur la géochimie des eaux et des sédiments. Des revues de la littérature scientifique dans ce domaine général ont été commandées par le programme de neutralisation des eaux de drainage dans l'environnement minier (NEDEM) en 1993 et 2009. Ces études ont porté sur les moyens possibles d’évaluer les effets biologiques potentiels de la DSA des résidus miniers, en mettant l’accent sur la faune et la flore qui avaient colonisé le bassin de rétention des résidus. S'appuyant sur ces rapports antérieurs, l’équipe du professeur Campbell a réalisé une étude qui visait d’abord à fournir des informations actualisées sur les changements diagénétiques potentiels dans les résidus immergés et sur les interactions biogéochimiques entre les résidus immergés et les communautés aquatiques sus-jacentes. Ensuite, sur la base des informations obtenues, ils ont formulé des recommandations quant aux outils et méthodologies à utiliser pour prévoir et/ou surveiller les effets biologiques des résidus immergés. Les contaminants abordés dans cette étude se répartissaient en deux catégories : (i) des oligo-éléments cationiques riches en données (Cd, Cu, Pb, Ni et Zn) et (ii) des oligo-éléments formant des oxyanions et des espèces polyhydroxy neutres, qui n’ont pas été traitées dans les rapports précédents (As, Mo, Sb, Se). D'autres éléments, tels que l’Al, le Fe et le Mn, ont été pris en compte dans le contexte des changements diagénétiques qui se produisent dans les sédiments et les résidus miniers après leur dépôt dans un parc à résidus subaquatiques.
Participants : Peter Campbell, William Price
Financement : Ressources naturelles Canada

 

Diplômés

 

 

 

Publications

___